417 research outputs found

    Optimal control of affine connection control systems from the point of view of Lie algebroids

    Get PDF
    The purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field

    Simulation model to estimate emotions in collaborative networks

    Get PDF
    This work has been funded in part by the Center of Technology and Systems and the Portuguese FCT-PEST program UID/EEA/00066/2019 (Impactor project), and partly by the GloNet project funded by the European Commission.In recent years, the research on collaborative networks has been pointing to the need to put more emphasis on the social interactions of its participants, along with technical features, as a potential direction to finding solutions to prevent failures and potential conflicts. In this context, a modelling framework called Collaborative EMOtion modelling framework (C-EMO), conceived for appraising the collaborative network emotions that might be present in a collaborative networked environment, is presented, and an implementation approach, based on system dynamics and agentbased simulation modelling techniques, for estimating both the collaborative network emotional state and each member's emotions, is described. The work is divided in two parts: the first considers the design of the models and the second comprises the transformation of these conceptual models into a computer model, providing the proposed simulation model. In order to validate the simulation model, and taking into consideration the novelty of the research area, experiments are undertaken in different scenarios representing several aspects of a collaborative environment and a sensitivity analysis and discussion of the results is performed.publishe

    Assessment of sustainable collaboration in collaborative business ecosystems

    Get PDF
    Advances in information and communication technologies and, more specifically, in artificial intelligence resulted in more intelligent systems, which, in the business world, particularly in collaborative business ecosystems, can lead to a more streamlined, effective, and sustainable processes. Following the design science research method, this article presents a simulation model, which includes a performance assessment and influence mechanism to evaluate and influence the collaboration of the organisations in a business ecosystem. The establishment of adequate performance indicators to assess the organisations can act as an influencing factor of their behaviour, contributing to enhancing their performance and improving the ecosystem collaboration sustainability. As such, several scenarios are presented shaping the simulation model with actual data gathered from three IT industry organisations running in the same business ecosystem, assessed by a set of proposed performance indicators. The resulting outcomes show that the collaboration can be measured, and the organisations' behaviour can be influenced by varying the weights of the performance indicators adopted by the CBE manager.info:eu-repo/semantics/publishedVersio

    Simulation-Based Decision Support System for Energy Efficiency in Buildings Retrofitting

    Get PDF
    Funding Information: This research was developed under project EnPROVE (Energy Consumption Prediction with Building Usage Measurements for Software-Based Decision Support) funded by the European Union’s Seventh Framework Programme (Grant agreement ID: 248061). Partial support was also given by the Portuguese “Fundação para a Ciência e Tecnologia (FCT)” through the project UIDB/00066/2020 (Center of Technology and Systems, CTS). Publisher Copyright: © 2022 by the authors.The implementation of building retrofitting processes targeting higher energy efficiency is greatly influenced by the investor’s expectations regarding the return on investment. The baseline of this work is the assumption that it is possible to improve the predictability of the post-retrofit scenario, both in energy and financial terms, using data gathered on how a building is being used by its occupants. The proposed approach relies on simulation to estimate the impact of available energy-efficient solutions on future energy consumption, using actual usage data. Data on building usage are collected by a wireless sensor network, installed in the building for a minimum period that is established by the methodology. The energy simulation of several alternative retrofit scenarios is then the basis for the decision support process to help the investor directing the financial resources, based on both tangible and intangible criteria. The overall process is supported by a software platform developed in the scope of the EnPROVE project. The platform includes building audit, energy consumption prediction, and decision support. The decision support follows a benefits, opportunities, costs, and risks (BOCR) analysis based on the analytic hierarchy process (AHP). The proposed methodology and platform were tested and validated in a real business case, also within the scope of the project, demonstrating the expected benefits of alternative retrofit solutions focusing on lighting and thermal comfort.publishersversionpublishe

    On the geometry of Riemannian cubic polynomials

    Get PDF
    AbstractWe continue the work of Crouch and Silva Leite on the geometry of cubic polynomials on Riemannian manifolds. In particular, we generalize the theory of Jacobi fields and conjugate points and present necessary and sufficient optimality condition

    The Role of Collaborative Networks in Sustainability

    Get PDF
    http://www.springerlink.com/content/978-3-642-15960-2#section=791431&page=1International audienc

    VirtualECare: group support in collaborative networks organizations for digital homecare

    Get PDF
    Collaborative Work plays an important role in today’s organizations and normally in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself, complex but is becoming normal in recent years. In this work we present the VirtualECare project (Figure 10), intelligent multi‐agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In the last years there has been a substantially increase in the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is not exclusive of the elderly, as diseases as obesity, diabetes, and blood pressure have been increasing among young adults. As a new reality, it has to be dealt by the health sector, and particularly by the public one. Thus, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when one want them not to be removed from their “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have assisted to a growing interest in combining the advances in information society ‐ computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results

    An analysis of selected cases

    Get PDF
    Funding Information: This work was supported by Project CESME (Collaborative & Evolvable Smart Manufacturing Ecosystem) and the Portuguese FCT program UIDB/00066/2020. Publisher Copyright: © 2022 The Author(s)The rapid proliferation of renewable energy communities/ecosystems is an indication of their potential contribution to the ongoing energy transition. A common characteristic of these ecosystems is their complex composition, which often involves the interaction of multiple actors. Currently, the notions of "networking", "collaboration", "coordination", and "cooperation", although having different meanings, are often loosely used to describe these interactions, which creates a sense of ambiguity and confusion. To better characterize the nature of interactions in current and emerging ecosystems, this article uses the systematic literature review method to analyse 34 emerging cases. The objective is threefold (a) to study the interactions and engagements between the involved actors, aiming at identifying elements of collaboration. (b) Identify the adopted technological enablers, and (c) ascertain how the composition and functions of these ecosystems compare to virtual power plants. The outcome revealed that the interactions between the members of these ecosystems can be described as cooperation and not necessarily as collaboration, except in a few cases. Regarding technological enablers, a vast panoply of technologies, such as IoT devices, smart meters, intelligent software agents, peer-to-peer networks, distributed ledger systems/blockchain technology (including smart contracts, blockchain as a platform service, and cryptocurrencies) were found. In comparison with virtual power plants, these ecosystems have similar composition, thus, having multiple actors, comprised of decentralized and heterogeneous technologies, and are formed by aggregating various distributed energy resources. They are also supported by ICT and are characterized by the simultaneous flow of information and energy.publishersversionpublishe

    Cubic polynomials on Lie groups: reduction of the Hamiltonian system

    Full text link
    This paper analyzes the optimal control problem of cubic polynomials on compact Lie groups from a Hamiltonian point of view and its symmetries. The dynamics of the problem is described by a presymplectic formalism associated with the canonical symplectic form on the cotangent bundle of the semidirect product of the Lie group and its Lie algebra. Using these control geometric tools, the relation between the Hamiltonian approach developed here and the known variational one is analyzed. After making explicit the left trivialized system, we use the technique of Marsden-Weinstein reduction to remove the symmetries of the Hamiltonian system. In view of the reduced dynamics, we are able to guarantee, by means of the Lie-Cartan theorem, the existence of a considerable number of independent integrals of motion in involution.Comment: 20 pages. Final version which incorporates the Corrigendum recently published (J. Phys. A: Math. Theor. 46 189501, 2013

    Meta-Governance Framework to Guide the Establishment of Mass Collaborative Learning Communities

    Get PDF
    UIDB/00066/2020 ERASMUS +619130-EPP-1-2020-1-FR-EPPKA2-CBHE-JPThe application of mass collaboration in different areas of study and work has been increasing over the last few decades. For example, in the education context, this emerging paradigm has opened new opportunities for participatory learning, namely, “mass collaborative learning (MCL)”. The development of such an innovative and complementary method of learning, which can lead to the creation of knowledge-based communities, has helped to reap the benefits of diversity and inclusion in the creation and development of knowledge. In other words, MCL allows for enhanced connectivity among the people involved, providing them with the opportunity to practice learning collectively. Despite recent advances, this area still faces many challenges, such as a lack of common agreement about the main concepts, components, applicable structures, relationships among the participants, as well as applicable assessment systems. From this perspective, this study proposes a meta-governance framework that benefits from various other related ideas, models, and methods that together can better support the implementation, execution, and development of mass collaborative learning communities. The proposed framework was applied to two case-study projects in which vocational education and training respond to the needs of collaborative education–enterprise approaches. It was also further used in an illustration of the MCL community called the “community of cooks”. Results from these application cases are discussed.publishersversionpublishe
    corecore